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If the variance of a short range Gaussian random potential grows like the
volume its quenched thermodynamic limit is reached monotonically.
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1. INTRODUCTION

The question of the existence of thermodynamic limit for all standard (i.e,
short range, see Remark 2 below) models of spin glasses with two-body
interactions has been settled long ago by Khanin and Sinai (9) and later
generalized to more general interactions by Zegarlinski (16) (previous refer-
ences on the subject include (7, 15, 11)). The sharper property of the monoto-
nicity of the free energy in the volume has been proved by van Enter and
van Hemmen. (4) In the long-range case (the most important examples being
the Sherrington–Kirckpatrick model, (10) the REM and the GREM (3))
monotonicity, in addition to existence, has been instead proved only very
recently. (2, 5, 6) The proof relies on an interpolation argument introduced in
ref. 5 which has the advantage of yielding the subadditivity of the free
energy (equivalently, superadditivity of the pressure). Exactly as in the
ferromagnetic case, (13) and in ref. 4, the subadditivity entails the important
property of the monotonicity of the free energy (pressure) as the volume
increases.
In this paper we show that the above interpolation argument can be

applied (actually in a slightly different form) to the short range case. For



Gaussian couplings, in the summable case and in the non-summable one as
well, we generalize the Khanin–Sinai and van Enter–van Hemmen results.
Namely, for general, mixed, short-range n-body interactions (n arbitrary:
for the physical relevance of n > 2 see, e.g., ref. 8), and assuming free
boundary conditions, the free energy, internal energy, ground state energy
are not only bounded but also decreasing in the volume. Hence their
thermodynamic limit is reached monotonically. We remark that in the dis-
ordered case the monotonicity is even more relevant than in the ferromag-
netic one because the ground state energy is tacitly assumed monotonic in
all numerical simulations; for a discussion of this point, see, e.g., refs. 1
and 12.
The conclusion which may be drawn by this paper, together with

refs. 2 and 5, is that as far as the thermodynamic limit is concerned Gauss-
ian spin glasses in free boundary conditions do not differ from ordinary
ferromagnets: in both cases pressure, internal energy and ground state
energy are bounded and monotonic in the volume.

2. DEFINITIONS AND EXAMPLES

Let M be a countable set and consider a finite subset L …M of cardi-
nality |L|=N. To each element i ¥ L we associate a dynamical variable
si ¥S … Rk ( for some fixed integer k) equipped with an a priori probability
measure ni. For each X … L we consider sX={si}i ¥X and a function
FX: sX Q FX(sX) ¥ R.
In analogy to ref. 13 (Section 2.4, formula 4.3) and ref. 16 we define

the random potential as

UL(J, s)= C
X … L

JXFX(sX), (1)

(with F”=0) under the following assumption: the coefficients JX are inde-
pendent Gaussian variables with zero mean and variance depending only on X
(and not on L)

Av(JX)=0, Av(J2X)=D
2
X. (2)

Examples:

HereM=Zd, and L is a cube.

1. The Edwards–Andersonmodel.S={+1, −1}, n(si)=
1
2[d1+d−1].

The nearest neighbor case is defined by Fn, nŒ(sn, snŒ)=sns
−

n for |n−nŒ|=1,
FX=0 otherwise, and D

2
X=c

2. More generally one may consider a short
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range interaction with with D2X=|n−nŒ|
−2 da, a > 1/2, or a many-body

interaction with a suitable decay law.

2. Multicomponent spin models (Potts models): S={1, 2, ..., q},
n(si)=

1
q;

q
l=1 dl , FX(sX)=dsX where dsX=1 if all components of sX are

equal and zero otherwise.

3. Continuous spin models: S=Rk, n(si)=dm(x) \ 0, >Rk dm(x)=1
(unbounded case) orS=Tk, n(si)=df (bounded case);

4. Lattice gases: hereS={0, 1}, n(si)=
1
2 [d0+d1].

Remarks:

1. Of course the examples may be considered on every finite dimen-
sional lattice like Zd or the triangular lattice etc.

2. The property that D2X is independent of the volume L characterizes
the short range case, such as the Edwards–Anderson one. In mean field
(long range) models, such as the Sherrington–Kirckpatrick one, the
variance has to decrease with N in order to have finite energy density.

Denoting PL(ds)=<i ¥ L dni(si) we define:

1. The random partition function

ZL(J) :=F
S
N
PL(ds) eUL(J, s), (3)

2. The random Gibbs–Boltzmann state

w(−) :=
>SNPL(ds)−eUL(J, s)

ZL(J)
, (4)

3. The quenched state

O−P :=Av(w(−)), (5)

4. The quenched pressure

PL :=Av(ln ZL(J)). (6)

5. The quenched potential

UL :=OUL(J, s)P. (7)

We remind that the free energy FL is −b−1PL, and the internal energy EL is
b−1UL.
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3. SUPERADDITIVITY

Lemma 1.

OJXFXP \ 0. (8)

Proof. We remind the integration by parts for Gaussian variables

Av(JXf(J))=D
2
X Av 1

df(J)
dJX
2 , (9)

and the correlation derivative formula

dw(FX)
dJX

=w(F2X)−w(FX)
2 \ 0. (10)

By applying successively (9) and (10) we obtain

OJXFXP=Av(JXw(FX))

=D2X Av(w(F
2
X)−w(FX)

2) \ 0. (11)

As a corollary of lemma 1 we have

OUL(J, s)P= C
X … L

D2X Av(w(F
2
X)−w(FX)

2) \ 0. (12)

Definition 1. Consider a partition of L into n non empty disjoint
sets Ls:

L=0
n

s=1
Ls, (13)

Ls 5 LsŒ=”. (14)

For each partition the potential generated by all interactions among dif-
ferent subsets is defined as

ŨL=UL− C
n

s=1
ULs ; (15)

from (1) we have that

ŨL= C
X ¥ CL

JXFX (16)

where CL is the set of all X … L which are not subsets of any Ls.
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Theorem 1. The quenched potential is superadditive:

OULP \ C
n

s=1
OULsP. (17)

Proof. Direct consequence of (8). In fact:

OŨLP= C
X ¥ CL

OJXFXP= C
X ¥ CL

D2X Av(w(F
2
X)−w(FX)

2) \ 0. (18)

Theorem 2. The quenched pressure is superadditive:

PL \ C
n

s=1
PLs . (19)

Proof. To each partition of L we associate the interpolating poten-
tial for 0 [ t [ 1

UL(t)=C
n

s=0
`ts U

(s)
Ls
, (20)

with t0=t, ts=(1−t) for 1 [ s [ n, U
(0)
L0
=UL and

U (s)Ls= C
X … Ls

J (s)X FX, (21)

where any J (s)X is a centered independent Gaussian

Av(J (s)X J
(q)
Y )=ds, qdX, YD

2
X (22)

(the symbol Av is here the average with respect to all the J’s). We define the
interpolating partition function

ZL(t)=F
S
N
PL(ds) eUL(t), (23)

and we observe that

ZL(0)=D
n

s=1
ZLs (J

(s)), ZL(1)=ZL(J). (24)

Consider the interpolating pressure

PL(t) :=Av(ln ZL(t)), (25)
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and the corresponding states wt(−) and O−Pt. Thanks to (24) we get

PL(0)=C
n

s=1
PLs , PL(1)=PL. (26)

We observe now that

d
dt
PL(t)=C

n

s=0

Es

2`ts
OU (s)Ls Pt, (27)

with E0=1 and Es=−1 for 1 [ s [ n. For each s we have

OU (s)Ls Pt= C
X … Ls

OJ (s)X FXPt; (28)

Integrating by parts each addend we obtain

OJ (s)X FXPt=`ts D
2
X Av(wt(F

2
X)−wt(FX)

2) (29)

and summing up all the contributions in (27):

d
dt
PL(t)= C

X … L

D2X
2
Av(wt(F

2
X)−wt(FX)

2)

− C
n

s=1
C
X … Ls

D2X
2
Av(wt(F

2
X)−wt(FX)

2)

= C
X ¥ CL

D2X
2
Av(wt(F

2
X)−wt(FX)

2) \ 0. (30)

From (26) and (30) we immediately get formula (19).

4. BOUNDEDNESS

For any random potential we define the quantity

||U||=sup
L

1
N
Av(UL(J, s)2)=sup

L

1
N

C
X … L

D2XF
2
X. (31)

Potentials with a finite ||U|| are called stable.

Theorem 3. A stable random potential admits an internal energy
and a quenched pressure bounded by the volume.
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Proof. By (12):

OUL(J, s)P= C
X … L

D2X Av(w(F
2
X)−w(FX)

2) [ 2 ||U|| N. (32)

Using the Jensen inequality

PL=Av(ln ZL(J)) [ ln Av(ZL(J))

=ln F
S
N
PL(ds) Av(eUL(J, s))=ln F

S
N
PL(ds) e

1
2 CX … L D

2
XF
2
X

[ 1
2 ||U|| N. (33)

As a consequence for finite ||U|| one has

sup
L

1
N
UL [., (34)

and

sup
L

1
N
PL [.. (35)

5. THERMODYNAMIC LIMIT

Let us verify the stability condition in the above examples.

1. Edwards–Anderson.
For the nearest neighbor case

C
(n, nŒ)
D2X=2 dNC

2. (36)

2. More generally for the short range case with a > 1/2

C
n, nŒ
D2X=C

n, nŒ

1
|n−nŒ|2da

[ constN. (37)

By Theorems 1 and 2 the previous models have an internal energy per par-
ticle and a free energy per particle which exist in the thermodynamic limit.

Remarks:

1. We point out that for short range models we only need to impose
the boundedness condition (31) while the superadditivity always holds
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thanks to the condition of independence of the variance D2X from the
volume (see also the Remark 2). In the mean field case the variance of the
interactions depends on the volume and subadditivity is based on an
inequality among the covariances (2)

N1cN1 (s, y)+N2cN2 (s, y)−NcN(s, y) \ 0. (38)

One may check that such an inequality reduces, in the short range case, to
the positivity of the right hand side of (30).
2. Our result may be extended in two directions by exactly the same

procedure of ref. 5. First one can prove by standard probability arguments
that the above statement entails the almost sure convergence of pressure
and ground state energy per particle. Second our result may be extended to
non Gaussian J (see Section 4.2 of refs. 5 and 14): if JX is for all X an even
random variable with a finite 4th moment the integration by parts (9) is
replaced by the more general formula

Av(JXF(J))=Av(J
2
XFŒ(J))−

1
4 Av 1 |JX | F

|JX|

−|JX|
(J2X−x

2) F'−(x) dx2 . (39)

When used within Theorem 2 it generates in formula (30) a correction of
order O(`N). Once the density is taken the correction vanishes in the
thermodynamic limit. In general, however, we cannot establish its sign and
the monotonicity is lost.
3. The present result holds for free boundary conditions. In general it

is proved (16) by standard surface over volume arguments that the quenched
quantities are independent of the boundary conditions, but the monotoni-
city property is lost.
4. It is interesting to observe that the interpolating strategy does

apply also to standard ferromagnetic systems. Consider for instance the
d-dimensional ferromagnetic Ising model with nearest neighbor Hamilto-
nian HL(s)=−; (n, nŒ) snsnŒ. An interpolating functional would be

a(t)=log C
s

e−b[tHL(s)+(1−t) C
n
s=1HLs (s)]. (40)

An easy calculation which goes parallel to Theorem 2 yields

da
dt
(t)= C

(n, nŒ) ¥ C

wt(snsnŒ) (41)

Since 0 [ t [ 1 the t-interaction on (40) is still ferromagnetic and the
Griffiths inequality (see, for instance, ref. 13) wt(snsnŒ) > 0 gives the positive
sign of the former expression ensuring the monotonicity of the limit.
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